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Toward the end of the research period, exploration of a new method

commenced. This procedure, which appears to furnish the desired math-

ematical simplicity, will be studied further during the forthcoming

research period.

(d) Finite Rotations. Some problems, require the proper

description of geometric nonlinearities. One such problem concerns

dowel action. In a narrow zone adjacent to the crack/slip plane, the

dowels that penetrate this plane undergo finite rotations. In order

to accommodate this effect, finite rotations were included in the

mixture formulation. This phenomenon was modeled using a von Karman-

type approximation that is valid for finite but moderate rotations.

Details concerning this effort can be found in paper No. 12 of

Section 5.

4.4.2 Model Validations

(a) Behavior in Shear (the Dowel Problem). A considerable

effort was made during the research period to validate the mixture

formulation in shear. For this purpose the dowel problem, which was

originally investigated during an earlier research period, was

examined again in detail. The results of this examination led to the

reformulation of the mixture model to accommodate finite rotations as

was noted above. Validations were then re-conducted. These valida-

tions consisted of comparisons of simulated versus measured behavior

for the problem described in subsection 4.4.2. Details concerning

this investigation are contained in paper No. 12 of Section 5.

Typical theoretical-experimental comparisons were presented in subsec-

tion 4.4.2. These comparisons indicate that the current mixture

description furnishes excellent global response simulation capability

in the above shear mode.
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(b) Behavior in Bending. An attempt was made to predict the

stiffness degradation and crack distribution evaluations associated

with flexural-type loading of reinforced concrete beams. This was

approached by first deriving a "mixture" beam theory from the full 3D

mixture model via suitable constraints on the global displacement

field. This is analogous to the derivation of beam models, such as

the Bernoulli-Euler Theory, from 3D elasticity.

The advantage of a beam-type model over a full 2D or 3D analysis

is supposed to be the ease with which one can effect analytical or

numerical solutions. However, serious complications were encountered

in this case which led to numerical problems. The trouble was traced

to the method by which "non-thru" cracks were being incorporated. A

new procedure has been proposed and, during the forthcoming research

period, another attempt will be made to examine the beam bending

example.

89N. N

.4.

" • " ", - % '.' " %'. ' %' % % ".'=,' %'%,'.'- . %"'=% N'.''. % '% '%"' '% -% - " "5 ...



5. PUBLICATIONS

The following is a cumulative list of research publications and

reports that have been prepared on research performed under the pre-

sent contract: i

Papers

1. Read, H. E., and G. A. Hegemier, "Strain Softening of Rock,
Soil and Concrete,"' Mechanics of MateriaLs, 3 (1984), 271.

2. Read, H. E., Discussion of "Hysteretic Endochronic Theory for
Sand," by Z. P. Bazant, R. J. Krizek and C.-L. Shieh, Journa L
of Engineering Mechanics, Vol. III(1), Jan. 1985, 103.

3. Hegemier, G. A., H. Murakami, and L. J. Hageman, "On Tension
Stiffening in Reinforced Concrete," Mechanics of MateriaLs, 4 0
(2), (1984).

4. Hegemier, G. A., and H. E. Read, "On Deformation and Failure
of Brittle Solids: Some Outstanding Issues," Mechanics of

MateriaLs, 4(1985), 215.

5. Hegemier, 0. A., and H. Murakami, "A Nonlinear Theory for
Reinforced Concrete," Proc. Second Symp. on the Interaction of
Non-NucLear Munitions with Structures, Panama City, FLA
(1985).

6. Valanis, K. C., and H. E. Read, "An Endochronic Plasticity 0
Theory for Concrete," Proc. Second Symp. on the Interaction
of Non-NucLear Munitions with Structures, Panama City, FLA
(1985).

7. Hegemier, G. A., and H. E. Read, "Strain Softening" (Discus-
sion), TheoreticaL Foundations for Large-ScaLe Computations 5
for NonLinear MateriaL Behavior, edited by S. Nemat-Nasser, R.
J. Asaro and G. A. Hegemier, Martinus Nijhoff, Pub. (1984).

8. Murakami H., and G. A. Hegemier, "On Simulating Steel-Concrete
Interaction in Reinforced Concrete. Part I: Theoretical
Development," submitted to Mechanics of MateriaLs. 4

9. Hageman, L. J., H. Murakami and G. A. Hegemier, "On Simulating
Steel-Concrete Interaction in Reinforced Concrete. Part II:
Validation Studies," submitted to Mechanics of MateriaLs.
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10. Valanis, K. C., and H. E. Read, "An Endochronic Plasticity
Theory for Concrete," Mechanics of MateriaLs, (1986), to
appear.

11. Murakami, H., and H. E. Read, "Endochronic Plasticity: Some
Basic Properties of Plastic Flow and Failure," InternationaL
JournaL of SoLids and Structures (1986), to appear.

12. Murakami, H., and G. A. Hegemier, "A Nonlinear Dowel Action
Model," in preparation.

13. Hegemier, G. A., and H. Murakami, "On Simulating the Nonlinear
Planar Hysteretic Response of Reinforced Concrete and Concrete
Masonry,* Third ASCE EMD Specialty Conference on Dynamics of
Structures, UCLA, Los Angeles, March 31 - April 2, 1986.

Reports

14. Read, H. E., "Strain Rate Effects in Concrete: A Review of
Experimental Methods," S-CUBED Report SSS-R-85-6081, January
1985, 35 pp.

15. Hegemier, G. A., H. E. Read, K. C. Valanis and H. Murakami,
"Development of Advanced Constitutive Models for Plain and
Reinforced Concrete," S-CUBED Annual Report to AFOSR, SSS-R-
85-7150, April 1985.

16. Valanis, K. C., "A Theory of Fracture for Brittle Solids," S-
CUBED, La Jolla, California, Informal Report, August 1985. %
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6. INTERACTIONS

The following is a cumulative list of the interactions (coupling

activities) by the contract staff members which have occurred or are

schedule to occur during the course of this contract on research done

under the contract:

6.1 ORAL PRESENTATIONS AT MEETINGS, CONFERENCES, SEMINARS AND
WORKSHOPS

1. Murakami, H., 'Some Basic Inelastic Response Features of the New
Endochronic Theory,' Oral presentation at the 21st Annual
Meeting of the Soc. Engrg. Sci., VPI, Blacksburg, VA, October
15, 1984.

2. Hegemier, G. A., "On Deformation and Flow of Brittle Solids,"
General Lecture presented at the Workshop on Inelastic
Deformation and Failure Modes, Northwestern University,
Evanston, Illinois, November 18-21, 1984.

3. Valanis, K. C., 'An Endochronic Plasticity Theory for Concrete,'
Oral presentation at the Workshop on Inelastic Deformation and
Failure Modes, Northwestern University, Evanston, Illinois,
November 18-21, 1984.

4. Read, H. E., 'Inelastic Response Characteristics of the New
Endochronic Theory with Singular Kernel," Oral presentation at
the Workshop on Inelastic Deformation and Failure Modes,
Northwestern University, Evanston, Illinois, November 18-21,

* 1984.

5. Read, H. E., 'Or. Modeling the Dynamic Behavior of Plain Con-
* .crete,' Oral presentation at DNA Concrete Material Properties

Meeting, Terra Tek, Salt Lake City, Utah, March 7, 1984.

6. Hegemier, G. A., 'Development of an Advanced Constitutive Model
for Reinforced Concrete," Oral presentation at DNA Concrete
Material Properties Meeting, Terra Tek, Salt Lake City, Utah,
March 7, 1984.

7. Read, H. E., "An Endochronic Plasticity Theory for Concrete,'
Oral presentation at the 2nd Symp. on the Interaction of Non-Nuclear Munitions with Structures, Panama City, FLA, April 1985.

8. Hegemier, G. A., "A Nonlinear Theory for Reinforced Concrete,'
Oral presentation at the 2nd Symp. on the Interaction of Non-
Nuclear Munitions with Structures, Panama City, FLA, April 1985.
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9. Hegemier, G. A., "A Nonlinear Model of Reinforced Concrete,"
Oral presentation at the U.S.-Japan Cooperative Conference on
Earthquake Engineering, Tokyo, Japan, Aug. 1985.

10. Read, H. E., and G. A. Hegemier, "Development of Advanced Con-

stitutive Theories for Plain and Reinforced Concrete," Oral
presentation at the Air Force Weapons Laboratory, Civil
Engineering Research Seminar, Albuquerque, New Mexico, Sept.
1985.

11. Hegemier, G. A., and H. Murakami, "On Simulating the Nonlinear
Planar Hysteretic Response of Reinforced Concrete and Concrete
Masonry," 3rd ASCE EMD Specialty Conference on Dynamics of
Structures, UCLA, Los Angeles, March 31-April 2, 1986.

12. Read, H. E., "Endochronic Plasticity: Application to Plain
Concrete," to be presented at the 10th U.S. National Congress of
Applied Mechanics, University of Texas, Austin, Texas, June
1986.

13. Murakami, H., "Basic Flow Properties of Endochronic Plasticity,"
to be presented at the 10th U.S. National Congress of Applied
Mechanics, University of Texas, Austin, Texas, June 1986.

14. Hegemier, G. A., 'On Simulating the Nonlinear Planar Hysteretic
Response of Reinforced Concrete and Concrete Masonry," to be
presented at the US/PRC Workshop on Seismic Resistance of
Masonry Structures, China, May 1986.
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APPENDIX A

NEW FAILURE SURFACE FOR THE ENDOCHRONIC CONCRETE MODEL

This appendix describes a new failure surface for concrete and

the procedure for introducing it into the endochronic concrete model.

Unlike the earlier failure surface used with this model, the new

failure representation accounts for the influence of the intermediate

principal stress on failure, which is known to be important for con-

crete, and provides an excellent correlation of various concrete

triaxial failure data. F'"

For the purposes of the present discussion, let us recall the

expression for deviatcric stress, s, as given by the model i.e.,

z ')
is P(zd - dz (-i)

wlhere the intrinsic time for shear, z is defined by the expression

F

Here, F., the shear hardening function, is responsible for the

characteristics of the failure surface.

In the original endochronic concrete model (Valanis and Read,

1985,1986), Fs was taken to depend on the pressure, a, in a linear

manner. This resulted in a Mohr-Coulomb type failure su-face which

was independent of the intermediate principal stress and which cut the

r-plane in a circle. Despite its simplicity, this simple failure
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criterion was evidently adequate for describing the data from Sca-

vuzzo, et at., (1983), which were obtained for stress states that were

sufficiently far from failure that no significant cracking occurred.

Under these circumstances, it is to be expected that the test results

will not be sensitive to the details of the failure surface, and this,

in fact, appeared to be the case.

To obtain accurate descriptions of response near failure, a more

sophisticated failure criterion is required, specifically one that

reflects the influence of the intermediate principal stress. For

isotropic media, the failure criterion in its most general form, is

expressible in terms of three independent stress invariants. For a

convenient representation in principal stress space, it is useful to

consider the three stress invariants a, J2 and 6 where

a = tr(o) (A-3)

J 2 s:s (A-4)
2 2 - (A4

c -1l_3_3J3___

=- cosI 2 2 )/2 (A-5)

3

W ~ and J 3 is defined as

J3 = 1 det (s) (A-6)
3 

4

The general form of the failure criterion for isotropic media can

therefore be written in terms of these stress invariants as

j= (,O) (A-7)

2O
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To determine the relation between the functions Fs and 0, con-

sider the case of radial deformation at constant hydrostatic pressure.

For this case, we can write

dep = n lldePll = n d5 (A-8)

so that
zs Z

S-z dz' n P( {pz 5  z')-- dz' (A-9)

*00

During the initial hydrostatic loading process for 0 5 zs _zs, we

have 0 0. Thus, if we set

Woz (A-10)W --Zs  - s

it follows that

z - Zs = w + Zs - Zs = w - w (A-11)

As a result, Eq. (A-9) can be rewritten in the form

dz , dwJ= n p zs - z')zs dz" = n p(w - w')dw,dw" (A-12)
j ( s dz fj 0

It has been shown by Read (1985) that when the hydrostatic hardening

function FH is of the form: ,

F = e (A-13)
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where P is a positive constant, it follows that

d5ds Fs(2CW + c2w2 1 / 2

-w (1 + cw) (A-14)

where

c=k F (A-IS)

and P, k are material constants. Substitution of Eq. (A-14) into Eq.

(A-12) gives

s F [2 cw + c2 (w')2] (

= n 's p(w - w) (1 + cw') dw (A-16)

" 0

Using a result given by Valanis and Read (1984), it can be shown that

i w 2,'2]1/2
i °  - W12 CW + c w' dw' = Mo (A-17)

lim p0 w (1 + cw')
.S 0

where

MW = J0p(x)dx (A-18)

Thus, from Eqs. (A-16) and (A-17), we can write

f
= lim s = n F M (A-19)

W- f

where the superscript f denotes failure. It then follows that at

failure we have
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FS M. (A-20)

The relation between the functions Fs and 0 is then obtained by com-

paring Eqs. (A-7) and (A-20), with the result:

F =42 *o JOA (A-21)

M

Thus, to define Fs, the function O(a,O) needs to be specified.

There are a number of advanced failure criteria for plain con-

crete available which have the general form of Eq. (A-7) (Mills and

Zimmerman, 1970; Willam and Warnke, 1974; Ottosen, 1977; Lade, 1982;

Peyton, 1983; Podgorski, 1985). Considering the large scatter in data

between experimenters as well as between different devices (Hegemier

and Read, 1986), most of these advanced failure criteria provide a

reasonably accurate description of existing concrete failure data.

The reader is referred to Ottosen (1977) and Podgorski (1985) for a

critical assessment of most of these failure models.

Inasmuch as most of the above failure models are reasonably

accurate, and none appear to have a significant advantage in

predictive capability or numerical implementation over the others, we

adopted for use in the present study the failure criterion that was

developed by S-CUBED (Peyton, 1983) during the previous AFOSR program

(see Hegemier, et at, 1983). A summary of this criterion is given

below.
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The failure criterion of Peyton (1983) is of the form

J2 J3
2 a = 1 (A-22)

where r and a are, in general, smooth monotonic functions of pressure
G, i.e.,

(A-23)
a = a(a)

The role of the function r(a) is to describe the effect of pressure on

the meridians of the failure surface, while the function a(u) deter-

mines the manner in which the trace of the failure surface in the r-

plane changes with pressure. In order for the trace to be convex, it

is necessary that 0 _ a 1. When a is a continuous decreasing func-

tion of pressure, the trace of the failure surface in the r-plane

changes smoothly from a triangle (a = 1) to a circle (a = 0) with

increasing pressure.

In order to express Eq. (A-22) in the form of Eq. (A-7), we

introduce the stress invariant J, where

3 3 J3

" = 2 J2)3/2 (A-24)

A@

Upon defining an angle 0 in the r-plane as shown in Figure A.1, it

follows that

J = - sin 30 (A-25)
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Figure A.1 Deviatoric stress plane, showing the manner in which the
angle e is defined.
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Equation (A-24) is now solved for J3  and the result introduced into

Eq. (A-22). Thus

2 2J [J]3/2

which is of the form

x 2- q x 1 (A-27)

if we set

2aJ x = (A-28)
q 3

By making the change of variable x = l/y, Eq. (A-27) assumes the form

y - y * I = 0 (A-29)

A further change of variable, y = X sin 0, allows Eq. (A-29) to be

written as

sin3 0 s in O + 0 (A-30)

Note that the above equation has the form of the trigonometric

identity

3 1

sin 3 0 - - sinG + - sin 30 = 0 (A-31)4 4
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if we set

X 2 Sin 30 =aJ (A-32)

Thus, from Eq. (A-32b), we can write,

0 [sin'(aJ) + 2nr] (A-33)
3

and, returning to the original variables, it follows that

2 2 sin [1 sin-1 (a.J) 2] (A-34)

which has the form of Eq. (A-7). To fit this model to a particular

set of data, the functions r(a) and a(a) need to be specified. A

procedure for doing this is described below.

Generally, failure data are available from triaxial compression

and triaxial extension tests. Using such data, we define a ratio r as

r =  compression (A-35)

[ J2 extension

where both values of f32 are taken at the same pressure. Using Eq.

(A-34) with J = +1 for compression and J = -1 for extension, it is

straightforward to show that r has the form:
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21 1 -1
r = - s i 

(A-36)r. 21r 1 .- 1sin + sin a)

This expression can be solved for a to give

a sin ~3 tan'f 3 - 1 )) (A-7

Therefore, by lknowing how (-2)compression and ('/2)extension depend

upon a from data, the dependence of a on a can be determined from Eq.

" (A-37).

Having determined a(a), and with the variation of (V2)compr.

with a known from data, the function r(a) can be determined from the

following equation

T(a) = 2sin(! sin-'ia+,r~~iJo (A-38)F 3 ) j)compr.

which is obtained by simply solving Eq. (A-34) for r(a) and setting

J=.1.

The above procedure was used to determine the forms of a and T

for plain concrete from the failure data shown earlier in Figure 3.2.

Here, failure data from both triaxial compression and triaxial

extension tests on plain concrete conducted by several investigators

on samples of several different strengths are depicted.4  After

4. Note that the data of Scavuzzo, et at. (1983) increasingly deviate
from the other data shown in the figures with increasing pressure.
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applying the above methods for determining a and T from the data, it

was found that

0 (A-39)

T 0T+O 00

where

a = 0.83

= - 1.913 f'
o c (A-40) VP

= 2 .144 --
0 c

= - 0.896 f' 4

The excellent ability of the model, with only four material para-

meters, to correlate the data was shown earlier in Figure 3.2.

Returning to the endochronic model for plain concrete (Valanis

and Read, 1985;1986), we note that the kernel function p(z) was taken

in the form:

-a rz
P A Arer (A-41)

r

so that, in view of Eq. (A-18) we have

A
M = (A-42)

a rSr

Upon substituting the values for A2 and ilr given by Valanis and Read

(1985;1986) into Eq. (A-18), it follows that
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MW= 17.5 ksi (A-43)

By combining Eqs. (A-20), (A-34) and (A-43), we obtain the following

expression for the shear hardening function in the endochrorn'c model

for plain concrete:

dcr

F sin[i sin-1 (aJ) +A-2w

13-3

*Here, a and 7r are given by Eqs. (A-39) and (A-40), and co 0.07 ksi-1.
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APPENDIX B

NEW DAMAGE-CRACKING MODEL FOR CONCRETE

The purpose of this appendix is to describe, in detail, a

damage-cracking model that is being developed under the present

program for ultimate use in conjunction with the endochronic concrete

model. The model was formulated by Valanis (1985) and is in the early

stages of development. The discussion given below largely follows

that given by Valanis (1985) and does not reflect various topics that

are currently under study, which include the addition of

(a) plasticity, (b) non-directional damage due to volume compaction,

(c) size effects and (d) strain rate dependence.

Formulation of Model

Consider a linearly elastic material which is isotropic in its

virgin unstrained state and undergoes small deformation at isothermal

conditions. As the deformation proceeds, damage gradually develops,

which in turn reduces the material integrity. For sufficiently large

deformation, the accumulated damage can lead to complete fracture, in

which the material cannot support tensile stress in a direction normal

to the crack. We shall formulate this damage-cracking process within

the context of irreversible thermodynamics and, for this purpose, we

introduce the free energy per unit volume.5 Since fracture leads to

a reduction in material integrity, we introduce an integrity tensor €

which will be discussed at length later and which is symmetrical such

that = (the unit tensor), when the material is in its virgin

5. This nomenclature is preferred to free energy density, in view of
the subsequent concept of "irreducible" material volume More will
be said about this later on.
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S

(undamaged) state, and * = when the material has fully failed, i.e.,

when the material cannot support stress in any direction. We thus

set:

ii~(, (B-1)

where a denotes the strain tensor. In a thermodynamic sense, 0 ncw

plays the role of an internal variable, in which case we can write the

following relations:

SE =  (B-2)

where a is the stress tensor and Q denotes the internal force, dual to

which is driving the fracturing process.

In view of the definition of 0, the following relations must

hold:

(EO) = 0 , '(0, ) = 0 , (B-3)

the first meaning that a fully failed material cannot contain free

energy and the second that an unstrained material must have zero free

energy; both conditions are relative to the reference state. Further-

more, the following conditions must also hold:

Q(E,Q) = 2 , (Qt) = (B-4)

= 0 (B-5)

Equations (B-4) require that the stress vanish in the fully failed

material and that, since the material remains elastic in the damaged

state, the stress will vanish at zero strain. Equation (3.5) stipu-

lates that the internal fracture causing force Q must vanish in the
fully failed material.
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If we now expand i/ in a Taylor series in L, retain terms no

higher than the quadratic, and observe relations (3 3), we obtain the

following form of i'"i:

= CkP-.k9 (B-6)

where C = C(O), which by virtue of Eqs. (B-3) may contain no constant

terms nor linear terms in . Since the material is assumed to be

isotropic in its virgin state, C may be represented in terms of outer

products of the unit tensor 6 and 0. Furthermore, since C is purely

quadratic in 0, it has no other representation than

Cijg=XCik 2# i~g (B-7)

in view of the symmetries imposed upon it by the symmetry of c implied

in Eq. (B-6). The constants X and 2# in Eq. (B-7) must indeed by the

Lame constants of the virgin material, since

Cijk= X5 6 kP + 2# 6 ikAP (B-8)

when 0 = . Thus, we can write

ii = X i ¢jkQ (B-9)
2 ~ i ij J lk . Ij P

so that, in view of Eq. (B-2a), a is given by the expression*

X j i jkP-fkZ + 2 (B-10)

This equation defines the constitutive response of an elastic frac-

turing material, once we establish how the integrity tensor is
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related to the fracturing process. In particular, an equation is

needed which describes the manner in which 0 evolves with accumulated

damage, and this is considered below.

Evolution Equation for 4

When the material is not strain rate sensitive, an increment of

tensile strain will produce an increment of damage. Specifically,

given an increment in strain, df, let d be its eigenvalues and nI

its eigenvectors. If d& and a are coaxial, then dc" will constitute

an increase in tensile strain if dea > 0 and Ea> 0, where ea denote

the eigenvalues of z. In the more general case where df and f are not

co-axial, dEa is said to be an increase in tensile strain if dEa > 0

and cijnianj = Ea n > 0 (a not summed). Now let do be the change in

the integrity tensor 0 due to the increment dg, and let na# be the

eigenvector of do. We now specify that do and d& are co-axial, so

that

= a (B-11)

The physical significance of Eq. (B-11) is examined in the discussion

following Eq. (B-14).

To completely characterize the evolution of $, the relation

between doa and dEa needs to be specified. For this purpose, we adopt

the following expression:

do a a ]d (B-12)

where
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kdca  for dEa ) O and ca >0
d(a =n- (B-13)

0 ,otherwise

Here, k and m are positive constants, and Oa - ijnina (a not

summed).

In view of Eq. (B-11), we can therefore write

doij= - a n d~a (B-14)

dv. 0n) i j a

With this evolution equation for 0, the constitutive description of

the elastic fracturing solid is now complete, once the material para-

meters X, / , k and m have been specified.

Physical Interpretation of Equations

The physical meaning of the above equations, and their relation

to the fracturing process, is best understood by reference to Eq. (B-

10), which relates the stress tensor to the strain tensor. Let Na be

the eigenvectors of $ and let a and a be referred to a system of

coordinates Ra. Then, the components of a and L on the 5a coordinate

system can be written as:

rs = orN (B-is)

rs = i..N rNs  (B-16)
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In this system of coordinates, is diagonal, i.e., ?rs = 0 for r $ s,

and Eq. (B-10) takes the form:

Ors =  rs mn mn 2 rmsnEmn (B-17)

Since is diagonal, we can write:

Cll = X #IIZOrr rr 11

r=l

21 12 = 2# 011022'12 (B-18)

031= 13 = 2# 011022'13 G

Let us now single out the eigenvector N1 and examine what happens to

the stress when the eigenvalue 01(= ?11) vanishes. Note from Eqs. (B-

18) that, if ?11 = 0, it follows thab or1 = F12 = a13 = 0, that is,

the solid cannot support stresses on a plane normal to N', on which

S1 ? 11 = 0. The physical meaning of this is that the decrease of 01

represents damage normal to the plane of N' and, as such, it is a

measure of the plane microcracks that have developed normal to N0

and/or the increase in the size of such cracks, so that when ?11 = 0,

a plane crack in the accepted sense has formed across the material

element on a plane with normal N1 , so that the element cannot support

tensile or shear stresses on that plane.

On the basis of the above observations, the physical meaning of

Eqs. (B-11), (B-12) and (B-13) now becomes clear. An increase in

tensile strain d a on a plane with normal na causes planar damage d#a

on that plane, where d0a is given by Eq. (B-12), in accordance with
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the observation that "planar microcracks form perpendicular to the

direction of the principal tensile strain."

The constant k in Eq. (B-13) is a material parameter that

reflects the fracture resistance or fracture toughness of the mate-

rial. Eq. (B-12) is representative of processes involving annihila-

tion of populations and catastrophic processes in systems where the

increment of annihilation is proportional to the state of integrity,

which is given here by the factor (0)m. This form is representative

of such systems, even though any monotonically decreasing function

f(on), such that f(O) = 0, will likely do as well. Finally, we note

that the damage tensor 0 can be expressed in terms of 0 as follows: N

D1-(,a) 2] NaN (819
D.. = >1 [i

The physical interpretation of the governing equations is now

complete.

3.3.3 Application to Some Simple Cases of Homogeneous Deformation

In this section, analytic solutions, based upon the constitutive

model described above, are presented for several simple cases of homo-

geneous deformation including simple tension, simple compression and

simple shear. These solutions provide valuable insight into the char-

acteristics of the model and reveal its remarkable predictive capabil-

ities, despite the fact that it involves only four material

parameters.

'v.
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As a preliminary development, consider the case in which the

strain field is homogeneous and consists only of principal strains,

i.e., fij= 0 for i $ j. Thus, d& and f. are always coaxial and 0 is

coaxial with & by virtue of Eq. (B-11). As a result, $ is diagonal.

In view of Eq. (B-10), a is also diagonal; the principal stresses are

given below in terms of the principal strains and the principal values

of0:

= T- 0 2 2 E

or = ' #2 1 #r.r 2# 02 2 (B-20)
r

03= X 3 r + 2# #3

r

The appropriate evolution equation for 0 is obtained from Eq. (B-14)

and is given in terms of the principal components of 0 as follows:

d#i = - (#i)m d 1
i

where

i = k dEi  , if dei  > 0 , Ei > 0

0 ,otherwise

We now consider two special cases of the above equations, namely,

simple tension and simple compression.
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Simple Tension

Consider the case of monotonically Increasing simple tension.

In this case, a2 = a3 = 0, and integration of Eqs. (8-21) with E2=E

and the initial conditions 02 = 03 =1, shows that 02 0 3 always.

Hence, we find that

02'2 =-2(X-js) e101= - (-22'9

and

2
1r E 11E (B-23)

where

E= X+ (B-24) 6

From Eq. (B-21a), the evolution equation for 01is

d~lom+ do = 0(B-25)

subject to the initial condition 01(0) =1. Thus, the solution is

-kE 1.4*

1 (B-26)

~1 - (-kl)-m ,if m 01

Combining Eqs. (B-2.3) and (8-26), 23 obtain

e - 2kE 1  i

o1r 2 (B-27)

LE E 11(l-m)k~l1}1m ,if m s 1

JO.,
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Inspection of Eq. (8-27) reveals that, for 0 ( m ( 1, C, is not a

monotonic function of el, but reaches a maximum and then goes to zero

for finite E1. For 1 < m ( 3, a1 again reaches a maximum and then

decays monotonically to zero as El * . For m = 3, c I monotonically

increases to an asymptotic constant value as l* , while for 3 < m <

, Cl increases monotonically with E1 . The influence of m on the

constitutive response is shown in Figure B.la. Thus, in the range 0 <

m < 3, the model exhibits softening in tension in agreement with

experimental data.

The model also unloads elasticity with an effective modulus of

2E01 which is diminished by the accumulated damage- Thus, the model

has all of the characteristics of a fracturing elastic solid. It

follows from Eq. (B-22) that E2 < 0 and hence 02 1, i.e., there is

no damage in the transverse direction to loading.

Simple Compression

Consider now the case of monotonically increasing uniaxial

compression. Here, 02 = U3 = 0, while a, and E1 are compressive.

Again, Eqs. (B-21) together with 2= E3 , and the initial conditions

02 = 03 = 1, lead to the result that 02 = 03 always. Similar to the *

-. case of simple tension, we find that

#2C2 = - Ol#E1  (B-28)

and

r= EO 12f (B-29)

The damage evolution in this case is, however, entirely different from

that for simple tension. Since both dEj and c 1 are compressive at all
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M>3=3

(a) Stress-strain relation in simple tension

"El } //  M>2 i

I<'.I

E 2

(b) Axial strain vs. lateral strain in simple
compression

Figure B.1 Predicted responses for simple tension and simple
compression, showing the effect of the parameters m on the
resulting behavior.
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times, we find from Eq. (B-21) that do1  = 0 and thus = 1 always.

However, in view of Eq. (B-28), E2  is now tensile and hence 02 (and

03) will increase with the consequence that damage will develop on

planes which are parallel to the axis of compression, in accordance

with experimental observation; this is the so-called axial splitting

mode (Horii and Nemat-Nasser, 1985).

From Eq. (B-21), we can write

w

d2 k d 2 =0 , (B-30)

the solution of which is

e-k2 ,

02 =  1 (B-31)

I {1 - (1-m)k2)1-m , m 1

Thus, in view of Eq. (B-29) and the condition 01 1, the axial stress

strain relation is

a I=E I'(B-32)

so that the response in the axial direction is purely elastic.

To find the relation between the strains, we use Eqs. (B-28) and

(B-31) together with the fact that = 1. It then follows that

- E1 = e 2m 1 (B-33)

E2f'- (1-m)k 2}1-m  m 1 1
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Here, we may distinguish three different cases:
k

(a) O<m <1

The strain e1 is not a monotonic function of E2. It reaches a

maximum absolute value and then goes to zero for a finite value of E2"

Specifically,

n~sl

E 1 n n1 (B-34)11lmax = kv n1)

where n = 1/(l-m).

(b) 1 < m < 2

Again, the strain e1  is not a monotonic function of E2 " It

reaches a maximum absolute value again given by Eq. (B-34) for 1 < m

and then goes to zero for infinite E2 , For m = I

'E1'max = vek ' (-35)

where e denotes the base of the natural logarithm.

(c) 2 < im <

In this case, E, is a monotonic function of E2 and approaches

the following limiting condition for increasing lateral strain:

i m a = max (8-36)

E2 '+ l0ia m > 2

The above cases are depicted graphically in Figure B.1(b).

.
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Collapse of a Block Under Axial Compression

It follows from the above discussion that a block consisting of

elastic fracturing material will collapse under axial compression if 0

< m < 2, since El has an upper bound given by the expression:

2-m

Ij imax - 2k -r

The limiting cases are

{vke
Iimax= 1 (B-38)

@ ma Luk , m =2

The collapse stress may be calculated directly from Eq. (B-32), with

the result:

2-m

I011max = E [-'im (B-39)

Thus, the theory predicts the collapse of a block under axial compres-

sion due to damage on planes parallel to the axis of compression.

Again, this is the axial splitting mode.

Ratio of Collapse Stresses in Tension and Compression

At this point, it is of interest to explore the rationality of

the above results by comparing the ratio cCt , where ac and c are

collapse stresses in compression and tension, respectively, obtained

analytically with that observed experimentally for concrete, even
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though the end-grip conditions in the tests may not be ideal, as

assumed in solutions obtained here. Restricting attention to the case

m 1, it follows from Eqs. (B-37) and (B-39) that

orc 2 (B-40)
t Lo 

Since v - 0.2 for concrete, we have

c '
a, 10 (B-41)
Ut-

which is close to experimental observation (Raphael, 1984).

Simple Shear

Consider now the case of monotonically increasing shear strain

under conditions of simple shear and small strain. The configuration

of interest is depicted in Figure

B.2. Inasmuch as the only non-zero strain component is E12 , we can

write

#kPk. = 2 #12' 1 2  (B-42)
.

and

#ik~jjkP. = (#ii#j2 + Oi2Oil)612 (B-43)

Therefore, in this case, the general constitutive relation

.. X O. kP 2# 0 i kj . (8-44)
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reduces to the form

ij= 2[ , OijO12 + #(0i11j2 + Oi2OjlJ11 2  (B-45)

Therefore, we can write

=1 2  2[X 012 + +2  (8-46)

a1 l = 2(X + 2#) (B-47)

a2 2 = 2(X + 2#) (8-48)

For a small strain, thte maximum tensile strain will lie in a

direction that makes a 45 degree angle with each of the coordinate

axes. Consequently, cracks will develop in the material as shown in

Figure B.2. The components of the unit normal n to the crack are n, =

n2 = 1/4.

Since there is only one cracking direction, we set a =1 in the

evolutionary equation for doi and write

doi j  k(On) mdE n inj (B-49)

where

On =  iin (8-50)

d = dE1 2

Since n1 = n2 = 1,F2, it follows from Eq. (B-49) that

do,= d02 2 = do12  (8-51)

Hence

126

P W



fOil 0f12ol= d 12 , (B-52)

since Oi = 6ij Initially. From Eq. (8-53) we find

Ol1 = 1 * 012 (B-53)

and Eq. (B-SOa) gives

=OIn + 012 (8-54)

since = #22 according to Eq. (8-51). "J"

Substitution of Eq. (B-53) into Eq. (B-54) yields

=1.2 + 12 (B-55)

which, when combined with Eq. (B-49), leads to the result

j= - 20 m d1 nin. (B-56)
I k( 212) 12 i j ~ ~~

Therefore, since n1 = n2 = I,'F2, we can write

k (1 + 12 m d 1 2  (B-57)d12 2 01) 1

which can be integrated to give, for m = 1:

l ek 12 (B -58_)'

012 = 2 - (8-8)

and for m 1:

#12 = 2 {k(m-)i12 l - I (8-5)"
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Recalling Eq. (B-53) and the fact that 022 = 011, Eq. (B-46) can be

placed in the following form:

U1 2 = 2{(X + 2#)o 2 + 2#2 (B-60)

Therefore, Eqs. (8-58) to (B-60) describe the relationship between C1 2

and C12"

From Eqs. (B-58) and (B-59) note that

1 2m 12 (X +'2u) E (B-61)

lim 112+ a 12 = - + 2A) 12(-2

Hence, when X < 2,u, the ultimate slope given by Eq. (8-62) will be

less than the initial slope, 2,u, as shown in Figure B.3. The case X >

2# on the other hand, leads to the ultimate slope being greater than

the initial slope, i.e., a hardening, which is difficult to visualize

from a physical standpoint. These limiting cases, however, fall out-

side of the assumption of small strains made here and therefore may

not be physically meaningful.
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0Xl

Figure B.2. Simple shear "
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Figure B.3. General relationship between 012 and €12 for the case in
which X > 2#s.
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APPENDIX C

LIMITING CONDITION FOR HYDROSTATIC RESPONSE

INTRODUCTION

In Section 4.5, it was pointed out that the limiting condition

at high pressures for hydrostatic compression response of concrete is

lim(Ci
o= (C-1)

P P

where a denotes the hydrostatic pressure and E is the limiting

volumetric strain at full compaction. It is shown in this appendix

that the endochronic model described in Section 4.5 satisfies this

condition when the hardening function FH is taken in the form:

and appropriate restrictions are placed on n(>O). The following proof

of this statement is due to Valanis (1986).

The Model

We consider the following endochronic model of hydrostatic

response:

rz d
= (z - z') P dz" (C-3)

0
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where K(z) is weakly singular and integrable,

d I dE (C-4)

and

dz = F (C-5) ,FH(E p ,-.y

We consider FH in the form: ".

F H = , n > 0 (C-6)

and, in addition, consider the case where

K(z) = , 0 < X < 1 (C-7)
z '

in which O(z) is bounded from above and

lim O(Z) =0 (C-8)

Analysis

We begin by rewriting Eq. (C-3) in the form

or [z(¢) - z'(5')] d5- (C-9)

jEz( ) z-,( )] X

which under monotonic straining conditions becomes 
'
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Iz
= ,[rz) - z'(c')1 d5 , (C-10)

jz () z ) (-'
"0

in view of Eq. (C-4). Since * is bounded from above and is a mono-

tonically decreasing function of its argument, we can write

t(z - z') > t(z) (C-11)

so that

' Z
a > tCz) d " (C-12)

- IZ(5) - zC5,)] x

Thus, to show that condition (C-9) is satisfied, it suffices to show
that

'z dc', Xe (C-13)
Pp zCs) - z'(5)]i

To show this, we use Eqs. (C-4) and (C-5) to obtain the expression:

dz= d5- j (C-14)

which may be integrated to give

1n n E nl- 1 - n+I , (C-15)
(n+i) (e*) p

p
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where the condition z(O) = 0 has been observed. We may therefore

write that ?

dJ z - (n+l)X C)nX d'' n (C-16)

0 0
Upon introducing the transformation

p!y = y " = p; (Cc- 1 7 )".

we can rewrite Eq. (C-16) in the form:ZI

= (n+1) ) (C-18) ,.z- .) jrc.n. n+1]X
(z J ' L(y-)- yi~]

y

In view of Eqs. (C-17), it then follows that

i , .d<;' nX d .
14 (n+1 Cn*idxr (Cn19)
pp (z-z')x = n )J ( ) X(n. l) '

0 0

which can be integrated to give 9-

Iz
) n nX

(n+1) .) 1"nIp.$, ; (zz. -- >( )- (Y, (y -X(n~l) (C-20) .-:
X [(n-) -e* 1)(C0

p~~~ p zz)%k0 0.

An inspection of the righthand side of this equation reveals that it

becomes infinite when
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X(n.l) -1 ( 0 (C-21)

or

- (C-22)

The condition (C-22) gives the relation between n and X that must be

satisfied by the hardening function (C-6) in order to satisfy the

limiting condition (C-1).
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APPENDIX D

DESCRIPTION OF CONCRETE UNDER COMPRESSIVE

STRESS STATES

1. INTRODUCTION

It is well known that the strength of concrete increases with

increasing mean confinement stress. This effect can be observed in

the triaxial failure surface of concrete in stress space, Figure D.1.

In addition to strength, the ductility of concrete is observed

to increase with increasing mean compressive stress. Typical

increases in ductility during standard triaxial tests are shown in

Figure D.2. The effect of confinement on ductility is seen to be much

greater than that on strength. This can also be deduced from the

behavior of reinforced concrete in the presence of confinement steel,

Figure D.3.

Analytical and experimental studies (see Nemat-Nasser, et aL.,

[1]) on brittle materials such as concrete suggest that, at low

confining stress levels failure occurs by the growth and connection of

a narrow zone of microcracks to form one or at most several

macrocracks or macrofaults, Figure D.4a,b. The onset of this event ',

(formation of a macrocrack) corresponds to the onset of "strain

softening" [2]. In contrast, at higher levels of confining stress

microcracks grow in a more uniform manner and a distribution of micro-

cracks evidently develops, Figure D.4c. Although failure may again

occur via localization, the formation of this distribution appears to

be responsible for the observed increase in ductility.
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Figure D.2. Influence of confinement on strength and ductility.
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Below the brittle-ductile transition, slip along the planes that

constitute the above distribution is a more plausible explanation of

increased ductility than is true plastic flow. consequently,

conventional phenomenological elastoplastic descriptions of concrete

under moderate compressive stress states appear to be inappropriate.

In view of the above discussion, an effort was made to construct

a theory of concrete based on a "slip system" concept. A description

of progress made to-date on this subject follows.

2. THE SLIP SYSTEM

Slip system models have been used previously to describe both

metals and frictional materials. A representative cross-section of

such models includes the works of Mandel [3], Spencer [4], Asaro [5],

and Nemat-Nasser, et aL., [6]. An excellent discussion and in-depth

treatment of the subject is given by Nemat-Nasser [7].

Figure D.5 describes the slip concept in the case of a single

slip system. Locally n represents a unit normal to the slip surface

and 4 is a unit tangent vector which describes the direction of slip.

The quantity A denotes an effective slip surface spacing. The slip

system and its geometry is presumed to form at a certain critical

stress state. The collection of these states forms a surface in

stress space.

In the sequel, a theory is described for an arbitrary number of

slip systems. Associated with the ath system is a normal vector

tangent vector z (a) and spacing A() Figure D.5, where a = 1,2

N.
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According to the slip concept, all irreversible deformation

(i.e., "plastic slip") is assumed to take place along the slip

surfaces. The material between these surfaces will be modeled as

elastic.

3. DEFORMATION

Let the relative rate of slip across a slip surface, Figure D.5,

be denoted as [v(s)]. Further, let ef (i = 1 to 3) denote the unit

orthogonal base vectors of a rectangular Cartesian reference system.

Then, if the rate of deformation tensor

~ 1
d 12i. +v. (D-1)dij = 2 vi~j * vj'J

where 4 is the velocity vector, is decomposed into elastic and inel-

astic parts according to

d.. = de. d?. (D-2)
ij Ij I j

one obtains

d? =1 n + S ni [v( ]  (D-3)

where

s i  • e n, n 9 e (D-4)

In the case of multiple slip systems, the effects are superposed to

give
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d1. N 2- i (D-s)
J =]

Since son sin i = 0, it is evident that the inelastic

deformation characterized by (D-5) does not involve volume change.

There are three plausible ways that inelastic volume change may accom-

pany plastic flow within the context of a slip system (Nemat-

Nasser[7]): (a) plastic volumetric expansion may occur normal to the

slip plane as slip takes place; (b) uniform isotropic expansion or

contraction may accompany slip; and (c) uniform inelastic volumetric

deformation may take place independently of slip.

The physical cause of (a) is asperities in the form of aggregate

interlock. Let (v(n)] denote the rate of separation of the _ slip

surfaces in the normal direction. Then

n. nn

a=1 J

represents the di latancy due to [v(n)] . If the latter is related to

the slip [v(s)] according to

[v(n)] = 1[v(s)] (D-6)

where 6, is a scalar function, then (D-5) can be generalized to give

d?. N [ (san s n a (D-7)
j : 2 i j j i nin j a
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The physical basis for (b) is the formation of microvoids and

microcracks due to slio, while that for (c) is the collapse of voids

under hydrostatic compression. These effects can be modeled by adding

to (D-7) terms of the form

N a

i~l Lij 2 + ij 3J a=  + 3

a=1 A ij

Consequently, the inelastic deformation rate tensor becomes

d? N - a ..v~s] b6"(-
1 -P/j a +f I Ja =1

where

an n 1 aa aaa + 9a (D-8b)
p'ij Li j jiJ i 1 i j Ii j 2 ij 3

In addition to the rate of deformation tensor dPj, a spin tensor

wPj is now defined according to (Asaro [5])

W = P N W N (D-ga)i j T.=i a

'~a=1A

where

..=. ~ ~ a -9b)so=  =n=
,j (san j s j n (D-gb) w
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4. INTERFACE BEHAVIOR

The ath slip system is assumed to be activated if the resultant

shear stress ra has attained a critical value defined by

f a(,a,,a PIal = 0 ; a,fl = 1 to N (D-10)

where aa denotes the normal stress on the slip surface, p is the mean

pressure, and epa are measures of the history of slip. Slip occurs

if, in addition to (D-1O),

a (a, oap = 0 (D-11)

Equation (D-11) can be expressed in the form

-a.aN PvSLP
a *0 tan7 1 + ptarn72 - h 0 (D-12)2P=l AP

where tan n1 and tan n2 are material parameters that characterize,

respectively, the effects of normal stress and hydrostatic stress on

slip. Here 11 corresponds to the usual friction. The quantity 2

reflects the influence of pressure on plastic flow; e.g., in crystal

plasticity this term would represent the influence of pressure on the

motion of dislocations . (In two-dimensional problems (D-12) can be

re-written in terms of Ua only.) The parameters haP characterize the

manner by which the slip system's resistance changes due to slip. In

what follows haP is assumed to be symmetric (but not necessarily posi-

tive definite). Finally, the effect of cohesion has been excluded in

the above formulation.
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Consider now the problem of calculating the time rate of change

of rra and aa in (D-1O) - (D-12). Since

a l n.na an a a
ra = Ta z = a. ns a = T n = a .. n.n. (D-13)

-i Ji IJ , IJ I J

it is clear that one must determine pa and sa in order to calculate a

and oa. The former rates must be objective. Based on the physical

processes under consideration, the following rates of change of the

unit vectors na and sa are defined

a e a -a e a
n i = we j n , s = W isj (D-14)

According to (D-14), the unit vectors are corotational with the elas-

tic deformation of the slip system. With use of (D-14), equations (D-

13) furnish

.a_ a.n a -a a a.n .(-S
j j nn (D-15)

where

__ e _(O-ww)

=- " k r j r i jk'ki

a
If one defines the quantity q1i according to

qi in + S n + nn.J tan +  ij tan (D-17)

then (D-12) furnishes the fol!owing relation which can be used to

calculate 9ij:
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a N
3 q = h.P T. h (D-18)

j IiP=1

5. GLOBAL CONSTITUTIVE RELATIONS

In this section the global constitutive relation for ai is

assembled. For this purpose the elastic part of the slip system

deformation is postulated in the form

,j = Lijkd k. (D-19)

where Lijkp is the instantaneous elastic tensor modulus. If the mate-

rial between slip planes is isotropic, then

Lijk = ('ik 6 jp" * 6 i# 6jk) + ii 6k "  (D-20)

It will be assumed that Lijkt is independent of the rate of elastic

deformation.

With use of (D-2), (D-Ba), and (D-18), the relation (D-19) can

be cast in the following form:

ij C k dk -6d O] (D'-21)
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where C~jkP is an "elastic-plastic" modulus defined by

N l

.. L [ N L. p a+ +ua.. a . M q P L (D-22)ijkP. ijkP , = ijmn mn im mj m mi mnmnkP.

where

M= ap h ap + qiajLijk(D23

6. REMARKS

The constitutive rel-ations (D-21) are fully nonlinear and incor-

porate an arbitrary number of slip systems. Their form is identical,

for all practical purposes, to the relations obtained by Nemat-Nasser

[7]. The only relevant difference concerns the interpretation of the

tensor Lijkf. The definition of this quantity, which may depend on •

the current stress and the history of deformation, is somewhat vague

for brittle materials such as concrete.

The constitutive relations (D-21) include classical plasticity

as a special case. However, there is an important difference. It can

be easily shown that the current model is such that the stress tensor

oij is noncoaxial with the inelastic deformation rate tensor d 1j.
This feature furnishes an ability to model localization phenomena.

A number of special case studies using the foregoing results are

under current study. These investigations are intended to determine

the modeling capabilities and limitations of the slip-system descrip-

tion of concrete behavior.
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